G DO o

J"‘\
i

IBM CONFIDENTIAL ~ ADVANCED COMPUTING SYSTEMS
SAN JOSE
February 23, 1966

MEMORANDUM TO: - File

SUBJECT : DYNAMIC INSTRUCTION
SCHEDULING DRAFT

L. Conway*

B. Randell
D. P. Rozenberg
D. N. Senzig

* Lynn Conway is the name that the first author legally adopted in January 1969

DECLASSIFIED September 7, 2000 - Lauren C. Bruzzone, IBM - Watson Research

DYNAMIC INSTRUCTION SCHEDULING

INTRODUCTION

The order in which the instructions comprising a program are
+o be excecuted is normally assumed to be given by the order 1in
which the instructions are held in program storage and by the
sequencing control indicated by transfer and conditional transfer .
instructions. However a programmer, OI compiler, can produce
many different but equivalent versions of a program merely Dby
making minor alterations to the sequence in which instructions
are placed. Normally the actual choice among these alternative
sequences will be somewhat arbitrary, though careful programming
or compilation often involves an attempt to design a program
whose detailed sequences are tailored to make best use of a com-
puter's control and functional capabilities. This can be partic-
ularly worthwhile for computers whose internal organization has
been designed to attempt to overlap the use of its various func-
tional capabilities.)

¥

Take, for example, a computer which initiates execution of
instructions in strict sequence, without necessarily awaiting the
completion of one instruction before execution of the next instruc-
tion, provided that the operands of the second instruction are
ready, and the necessary busses and functional units are available.
On such a computer the sequence (written here for convenience
in a 3-address format)

Rl + RZ—? R3

R, X Rd-e R5
R R2 > R.7
R, X Rﬁ ')?;"RB
might well be preferable to

Rl + RZ—‘;RB

-R6 : ; R2 —}R?_
le X R'.q —anRS
RB X RG -)RB

if the adder and _njﬁ}tiplier were independent functional units.

— P

Thus if really effective use is to be made of the internal
capabilities of such a computer, careful attention must be paid
to the detailed sequencing of instructions in frequently executed
portions of a program. This 'scheduling' can be done by an ambitious
optlmlzlng compiler, or an extremely conscientious hand-coder.
There is 'often, however, a difficulty in achieving really optimum
sequencing by such means--that of the effects of memory interfer-
ence, which if present will cause variations in the times which
operands take to reach the arithmetic and control unit from storage.
The effects of such memory jnterference will not usually be calcu-
lable in advance of program execution, particularly if the inter-
ference is caused by autonomous I/0 units using the memory.
Thus there is often cause to consider the possibility of supple-
"menting (or even replacing) the static scheduling performed by
coder or compiler by dynamic scheduling performed by the computer
as it executes a program. In this paper we describe a technique
of dynamic scheduling permitting non- sequentlal instruction execu-
tion. Furthermore, the technique presented is shown to be capable
of controlling the simultaneous execution of two or more instructions
at a time on machines with suffieiently generous bussing and func-
tional capabilities. In any actual computer design care would of
course have to be taken to ensure that any possible gains achieved,
by such dynamic scheduling were not offset by the cost (both in
speed and in circuits) of the extra hardware necessary to perform
the scheduling.

The scheme presented uses a very general, but conceptually
simple, method of controlling non-sequential instruction execution,
and of identifying groups of instructions which are mutually
independent and cansbe executed simultaneously. Brief descriptions
of earlier schemes for achieving some of these aims have been given
by Amdahl [1], Chen [2], and Thornton [3].

NON-SEQUENTIAL INSTRUCTION EXECUTION

In this section we restrict dur attention to the sequencing
of straight line coding comprised of instructions, the locations
of whose operands and results can be determined directly from the
instructions themselves, rather than needing any address computa-
tion to be performed.

The seqguence in which a series of instructions have been written
implies the total effect that these instructions are intended to
have when executed, Each separate instruction contributes to
this total effect by performing its operations on the contents
of certain registers (accumulators, index registers, indicators,
etc.) and setting its results into other registers. A dynamicC
scheduling technique has to insure that any instructions obeyed
out of sequence do not change the contents of any registers which
2re to be used by any instructions whose execution has been delayed

temporarily.

A simple set of rules for determining.if a given instruction
can be obeyed out of sequence 1s as follows:

1) The required busses and funcdtional units are available.

(ii) The instruction must not use any registers which are
used as refult registers by instructions whose execu-
tion has been initiated but not yet completed.

(1ii) The instruction must not use as result registers any
, registers which are used as operand registers by any
preceding instructions which have not yet been initiated.

(iv) The instruction must not use any registers (either
as result or operand registers) which are used as result
registers by any preceding instructions which have
not yet been initiated.

These checks can be made in a systematic'fashion using what
are here called 'sequencing matrices'. Two matrices are used,
namely a 'source matrix' (S) and a 'destination matrix’ (D).

At each cycle, when the machine is attempting to choose an instruc-
tion to be executed, rows in these matrices are set up correspond-
ing to each of the instructions which are being considered by the
scheduling machanism. (The cycle referred to above is a clock
cycle, which corresponds to the maximum rate at which instructions
can be initiated, and will presumably be much shorter than a
storage cycle.) The elements in each row of the matrices indicate
whether a given register 1is being used, or will be affected, by

the corresponding instruction.

th

The element S, J is set to one if the i | instruction uses
r
the contents of register j as an operand. The element Di y is set
th '

to one if execution of the 1 instruction will cause the contents
of register j to be replaced. |
Take, for example, a very simple machine with eight registers

and a 3-address format, using a scheduling mechanism that processes
four instructions per cycle. A typical situation would be:

Tnstruction Source Matrix _ Destination Matrix
12345678 1l 2 3 45 6_1 8
1. R, +* R,—Ry) ll 1 | l } 1
2. Ry X R,—R, 14 B : 1 18
3. R; + R,~¥Rqg 1111] ' B i |
b mg R R] 1 INERREEN

Fig. 1 _

Thus each row has been set up by processing the register
address fields of the corresponding instructions, and converting
these addresses into unary form. However in more realistic machines
the setting up of the matrix elements would not be so straight-
forward. Almost certainly it would involve decoding the operation
code part of the instruction to determine what implied registers
are used by an instruction in addition to those indicated by address
fields.

In addition to the matrices, which provide.a conveniently
coded form of indicating the register requirements of instructions
awaiting execution, a 'busy vectoxr' (B) is used to indicate the
current status of the machine registers. The length of the vector
is equal to the number of registers. The element Bj is set to

one when execution of an instruction which will cause the contents

of register j to be replaced is initiated; it is reset to zero
when the replacement has been completed.

Once the sequencing matrices and the busy vector have been
set up as described, the basic algorithm for choosing an instruction
to be executed can be described as follows. Starting with the top
row of the matrices, each instruction is checked--instruction 1

can be executed 1i1f:

—

(1) The required busses and functibdbnal units are available.

{11) The elements of B corresponding to the non-zero elements

of the ith rows of §S and D are zero.

S b

(11ii) The elements above xrow 1 of the columns of D corres-

ponding to the non-zero elements of row i of S contain
only zeroes.

(iv) The elements above row 1 of the columns of S and D

corresponding to non-zero elements of row i of D contain
only zeroes., | *

Returning to the previous example, with the busy vector set
up to indicate that certain registers, 3 and 6 for instance, are
still to have their contents replaced, by the action of previously
initiated instructions

Instruction Source Matrix Destination Matrix Busy Vector

123456 7 8 12345678 12345678

Li|4]1 H_' HHLU._J

1l |
N |||l ,_
R1 + R2~bR5 111 _
RB 3 Rl—%RB 1 | 1 1|
Fig. 2

Instruction 1 cannot be executed because of rule (ii)

Instruction 2 cannot be executed because of rules (i1ii) and

However instruction 3 can be executed, provided that the
necessary bussing and functional capabilities are available.

Each cycle, while the schedulinhg mechanism is attempting to
choose an instruction to initiate, a deecoding mechanism could be
processing a further instruction, taken from the address in the
instruction store given by an instruction counter. In contrast
+o a conventional instruction counter, this countex does not
indicate which instruction is currently being executed, but rather
which instruction is next in line for processing by the scheduling
mechanism. With non-sequential instruction sequencing 1t is not
possible to have a conventional instruction counter. This can
in certain circumstances b€eé a disadvantage of the system, and
is discussed further below.

At the end of a cycle, if an instruction has been chosen
(it is of course possible that none of. the instructions can be
initiated until some of the non-zero elements of the busy vector
become zero), the.rows corresponding to the instruction are removed
from the matrices. The remaining rows are then pushed upwards

—G—=

to f£ill in any gap, the bottom row of the matrix is replenished

using the instruction which has just been decoded, and the instruc-
tion counter is incremented. All is then ready for the scheduling
mechanism to again scan the matrices in an attempt to choose another

instruction to initiate.

In the above example, the situation at the start of the next
cycle might be (assuming that registers 3 and 6 have still not had
their contents replaced) as shown in Fig. 3. During this cycle the
Divide instruction will be chosen for execution.

Instruction Source Matrix Destination Matrix Busy Vector
12345678. 12345678 1234567F8

o+ ngny 1] TLLLILRl] CLLILLIT

R, X Rz-*-;—R4 l 1 ______1! : |

Rg ¥ Ry Rg 1 - 1

R, - R;>R, 1] 11

Fig. .3

~ In the above general description of the proposed technique
for non-sequential instruction execution the discussion has been
limited to the scheduling of straight-line coding composed of
instructions whose register requirements can be determined immedi-
ately from inspection of the instructions. The next two sections
of this paper deal with the effect of unconditional and conditional
branch instructions, and with a technique for scheduling instruc-
tdons which refer to indexed addresses in storage.

UNCONDITIONAL AND CONDPITIONAL BRANCHING

There is one kind of branch instruction, namely the unconditional
branch to an explicit instruction address, which can be handled very
simply, without recourse to the sequencing matrices. The instruction
is executed as soon as it has been decoded, causing the appropriate
modification to the instruction counter which indicates the location
from which the sequencing matrices are to replenished.

The other types of branch instructions, where the branch address
and/or the guestion of whether the branch is to be taken cannot be
determined directly fr®m the instruction, but rather depend on the
contents of one or more registers, cause rows to be entered into
the seguencing matrices in the usual way. However refilling of
+he matrices then stops until the branch instruction has been
executed and any necessary modification has been made to the instruc-
¢ion counter. Thus once such a branch instruction has entered into
the matrices, the matrices will gradually empty until the execution
of the branch instruction permits refilling to begin. This means

.that every effort should be made to initiate execution of the branch

instruction as soon as possible, and that once the branch instruction
has been executed, empty rows of the matrix should be replenished

as quickly as possible. Otherwise, the matrices will spend much

of their time only partly full, and the chances of finding an
executable instruction each cycle will be congiderably reduced.

Since a scan of the matrices enables all the executable instruc-
tions to be identified, what is required is to ensure that a branch
instruction is given priority over dny other executable instructions.
The simplest way of doing this, since there can never be any instruc-
tions in the matrices below a branch instruction, is to always choose
the lowest executable instruction, whether or not this is a branch
instruction. However it could be arqued that this is taking
unnecessary liberties with the sequencing of a program, which will
cause undue complications in program debugging, The. alternative is
to arrange some system whereby if there is an executable branch
instruction it is initiated, but that otherwise the highest
executable instruction 1s chosen.

The second reguirement, that of speedy replenishment of the
matrices once a branch instruction has been executed, required decoding
facilities operating in parallel on several instructions. The alter-
native of relying solely on. the normal decoding and replenishment
mechansim, which fills only one row each cycle, is unlikely to be

adeguate. | :

An 'Execute' instruction, which can be regarded as a temporary
branch for the duration of a single instruction, involves only
slight extensions to the above system. Filling of the matrices is
halted once an Execute instruction has been reached, until it can
be obeyed and the instruction which it specifies can be fetched

i

and placed in the matrices. Unless this is another Execute instruc-
tion, or a branch instruction, filling of the matrices can then be

resumed, starting with the ifistruction following the original
Execute instruction.

— 0~

THE SEQUENCING OF STORAGE ACCESSES

Another area where dynamic scheduling can be of value is the
sequencing of accesse3§interleaved storage. Such storage is char-
acterised by the fact that access to one of the autonomous. memory
units, e¥ of which the storage 1is comprised does not have to await
the completion of previous accesses to other boxes. Rather, storage
accesses can be made at the rate at which they can be accepted
by the bussing system, provided that repeated accesses to the same
box are sufficiently separated. Thus the problem of sequencing
storage accesses can be regarded as having similarities to that of
sequencing instructions, with boxes$ taking the place of registers,
and 'bus slots' the place of clock cycles.

The particular box involved in a storage access is determined
from the effective address of the location to which access is beilng
made (typically a group of the least significant digits of the address
is used). Such an address will normally be the result of a calcu-
lation involving the contents of one or more registers. Thus the
box used by a storage access requested by a register load orx
store instruction cannot be determining directly by examination of
the instruction, it being necessary to wait until the effective
address can be calculated. '

Though one can conceive of a single scheduler being used for
sequencing both instructions and storage accesses, it seems more

reasonable to have a second scheduler just for sequencing storage
accesses, operating in conjunction with the instruction scheduler.

The storage access scheduler could operate according to the same
general principles ‘as the instruction scheduler, using source and

destination matrices (SA and DA' say), and a busy vector (BA)'

whose respective columns and elements correspond to the various boxes.
It would receive requests for storage accesses both from the |
instruction scheduler, on behalf of load and store instructions,

-nd from the instruction fetch mechanism which is used to replenish

+he instruction scheduler.

The instruction scheduler described above is designed on the
assumption that once an instruction is removed from the matrices
and issued, it no longer has any demands on the registers that it
uses for its operands. Therefore, a set of buffer registers are
included in the storage access scheduling mechanism to hold the
contents of registers which are to be stored, until the required
storage access can be initiated. '

Certain constraints must be placed on the order in which storage
access requests can be issued to the storage access scheduler from
the instruction scheduler. For example, a store request must not
be issued to the storage access scheduler before any preceding load
request. Only when the boxes involved in these requests have been
determined will it be possible for the storage access scheduler to

perhaps make such modifications to the sequencing of storage access
requests. In fagt what is necessary 1is for the instruction scheduler
to treat the store as a single extra register. Therefore an addji-
tional column is added to the S and D matrices, and an element is
added to the busy vector. Hoéowever this extra busy vector element
is not set to one unless the storage access scheduler is unable to
accept any further storage access requests. All load instructions
have the extra element in their row of the S matrix set to one; all
store instructions have the extra element in their row of the D
matrix set to one. The normal sequencing rules will then apply

the necessary constraints to the issuing of access requests.

Figure 4 demonstrates the setting of the matrices and busy
vectors of the two schedulers on a machine with 4 registers and 4
storage boxes. The instruction scheduler processes six instructions
per cycle; the storage access scheduler processes four access
requests per bus slot. Instructions are either 3-address format,
or specify single-indexed loads and stores. The vector B indicates
that registers R, and R, are still involved with previously

initiated instructions, and that the storage access scheduler has
capacity for further storage access requests. The storage access
scheduler contains only three access requests--a load of register

R3 from address 53 in box 1, and a store of the literal 91 (the

contents of some register) in address 29 of box 2, and a load of
register R, from address 25 of box 3. The vector B, indicates

that box 1 is still involved in some earlier access request.

When the instruction scheduler initiates execution of a load or
store instruction the rows corresponding to the instruction are
removed from the S and D matrices, and the B vector (except for
the last element, corresponding to the store) is updated in the
usual way. The effective address is calculated, and it and the
address of the register to be loaded or stored are transmitted to
the storage access scheduler (together with the contents of the
register, in the case of a store instruction). ‘This storage access
request causes the highest unoccupied row of the matrices S, and D,

to be set up so as to indicate the box requirements of the request.

R, + Rz-—¢R3

S[Rl + 2]-&R3

S[R2 ~ 1]-—->R4

Ro

Rl X R3-—§Rl

—S[R, + 1]

1:53 R3
'91' 2:29
3325 Rl

Fig.

INSTRUCTION

S
ICNED

1
. r ﬁ {
1 1
|
1 1

T2
1

SCHEDULER
D &
r} 2|3[4]s 1
1 l‘
| f .
1
i {
bcd
iT

STORAGE ACCESS SCHEDULER

°A

1i2]3 |4 |

B

172

A
213174
e

4 Example of a 4 Register, 4 Storage Box

Machine

The matrices SA and DA are scanned each bus slot time, in order

to choose an access request which can be issued ahead of any preceding
requests which are held up, and which does not involve a box indicated

by the vector B, as being still involved with a previous accessf The
Vw5 e §
\corresponding to this request are removed from the matrices, the)\rows

are pushed up to fill in the gap, and the busy vector updated. When
a storage access to a box has been completed the corresponding element
of By is made zero once again. If this access was on behalf of a load

instruction, the appropriate element of B is made zero when loading
of the register has been completed.

Returning to the example demonstrated in Fig. 4, the situation
after one machine cycle and bus slot time is shown in Fig. 5. The
third instruction, a load instruction, has been chosen for execution,
the effective address specified by it has been calculated to be |
location 57 of box 4, and it has been issued as an access request to
the storage access scheduler. Meanwhile the second storage access
request has been issued, the preceding request being still blocked
because the required box is still involved in an earlier access.

R

Fig.

~13-

INSTRUCTION SCHEDULER
S

D
11213148 |
1

“ 1

STORAGE ACCESS SCHEDULER

5. The Example of Fig. 4 One Cycle and One Bus Slot

Later

t W W

e b

There are many possible variations on this scheme for sequencing
storage accesses. For instance, one can ‘dispense with extra buffer
registers and continue to hold quantities in the working registers
until the appropriate memory unit can be accessed. What is required
to avoid unessential slowing down of the instruction scheduler is
that the registers used in the calculation of the effective address
be released before the instruction is necessarily removed from the
matrix. This introduces a new complexity. Previously an instruc-
tion was not modified in the matrices, except for its possible bubbling
towards the top, until its complete. removal from the matrices.

The bits in the source matrix corresponding to those components
of the effective address calculation would béget to zero as soon
as they are used. This at least releases those registers for use
in further calculations. One might further refine interlocking
on register usage so that effective address calculations were per-
formed before the contents of the register to be loaded or stored
were available. -

Indirect addressing can be handled in much the same way as
branch amd execute instructions. If the various levels of indirect
addressing use new indexing registers at each step then no instruction
can be permitted to be executed which may result in any register
modification. Unless memory read buffers are present this effec-
tively means that indirect addressing will stop instruction initiation
though matrix replenishment can proceed. If indirect addressing does
not require new indexing registers but simply generates new memory
store access requests then only succeeding store instructions must
be inhibited until the indirect addressing chain is terminated.

.nl5...

' SIMULTANEOUS EXECUTION OF INSTRUCTIONS

The instruction scheduling method described above uses the
sequencing matrices in order to detect which instructions can be
obeyed out of sequence. As a byproduct it automatically detects
which instructions can be initiated simultaneously, at least in so
far as register usage is concerned. Thus, given sufficient functional
Capabilities and sufficient busses between registers and functional
units, the scheduling scheme can be used to control the simultaneous
initiation of instruction execution. The matrix scanning algorithm
would remain unchanged, though from a hardware point of view if not
conceptually the procedure for compressing the remaining rows in
the matrices upwards to fill in any gaps becomes more complex.

We assume that the machine has a number of indépendent ‘func-
tional units in addition to the memory and branch control units.
Typical additional independent specialized functional units are
floating point add/subtract, multiply, and divide units. We make
the further assumptions that each functional unit has a buss connect-
ing with the registers and that there is only one functional unit of
each type. The complexities that arise when these assumptions are
removed will be discussed below.

The requirements for simultaneous initiation of instruction
execution’ the addition of a bit to the busy vector for each
functional unit that cannot accept operands every cycle and a column
appended to the destination matrix for every functional unit.

The busy yector bit corresponding to the functional unit is
turned on by the initiation of execution of an instruction in the &
corresponding funtional unit. The busy vector bit is turned off when
the functional unit is able to accept a new operand pair.

Rule (i) of the sequencing algorithm given informally above can
here be stated as: the elements of B representing the functional

units must have zeros corresponding to non-zero elements in the

iLh row of D. The elements above row i of the columns of D corres-

ponding to the non-zero elements of D contain only zZeros.

The operation code portion of the instruction is decoded to
the extent that it is known which functional unit is going to execute
the instruction. This infdrmation sets a one in the bit position
whose row index corresponds to the instruction and whose column
index corresponds to the functional unit.

Going back to the example used in Fig. 2 and assumming that
the functional units are an add/subtractor that can accept a new
palr of operands every cycle, a multiplier and a divider that cannot
accept a new pair of operands every cycle, and a branch controller,
we have the gituation shown in Fig. 5. | |

.._.16_.

As in Fig. 2, Instruction 1 cannot be executed because of rule
(1i). Instruction 2 cannot be executed because of rules (1ii) and
(iv). In addition Tnstruction 2 cannot be executed because of rule
(1), i.e., because the multiplier is busy. The execution of Instruc-
tions 3 and 4 can be initiated--they violate none of the rules on

register usage and the appropriate functional units are free.

ans is done in the sequential case, at the end of the cycle,
instructions that have been chosen for execution are removed from

the matrix. The remaining rows are pushed up to fill in the
gaps, and new instructions are inserted at the bottom of the matrix

to replace those which have been initiated, and the instruction
counter is incremented. '

Tn the above example (Fig. 5) the situation during the neXt
cycle might be as shown in Fig. 6. The instructions 1 and 2 are
inhibited by the same reasons as before. Since the Busy vector bit
corresponding to the Branch unit is zero (indicating no Branch
instructions in the matrix) new instructions can be entered. The
new instruction 3 (RG - R3ﬂ9R3] is inhibited by rules (ii) and (iv) .

The new fourth instruction specifies a branch to the memory:
locations specified by the contents of register R, plus 71

if register R, contains a zero. Since all of the registers used by

this instruction are free this instruction can be initiated. Since
we still can have but one branch instruction in the matrix at a

time no Branch column on the Deatination matrix is needed though the
equivalent may be needed by the replenishing mechanism. The Branch
bit on the Busy Vector is needed to inhibit the matrix replenishing

hardware.

In the case of the sequential. control the point was made that
preference should be given to branch instructions. Here, because one
can say that each functional unit is looking for work, no special
priority need be given to a branch instruction. 3

RB + R4 R7
*

R? Rz R4

Rl - R2 RS

RS < Rl RB

Fig.

3 g Ry
>
Ry ® Ry Ry
Re = Rg Rj
p & Rl; R2
Fig.

SOURCE MATRIX

DESTINATION MATRIX

S,

6.

o, .

Cycle 1.

SOURCE MATRIX

DESTINATION MATRIX.

1 2345678 12345678x%-"
11 | | | 1]
| *))
l l 1 ||
q..__._..hl L —_r-———n—n—i-—-—-——-i
X4 L r - 1] 1 1

BUSY VECTOR BRANCH

123456 7

8 X =

al

1

Sl ﬁ i)

.]11 tJEl" \

BUSY VECTOR BRANGH

Cycle 2.

1 2345678 12345678x+%=* 12345678x%
} 6 7 8
' 1)1 E 1 1 1l (111 |2 1‘
. -* — 1
1 .
O 1
1 1 BB 1
i !
ol 1|1 __j |
L u | § |

Example of Multiple Instructions per Cycle Initiation=--

s} O

If more than one functional unit of a given type exists but each
has its own busses then it i1s necessary to add a bit to the busy
vector corresponding to the new functional unit. No additional
columns are added to the Destination Matrix.

In the discussions above it has been tacitly assumed that the
functional units were completely passive since the sched:ilier dispenses
operands to the functional units for execution. If instead one takes
the approach that the functional units are active, and that the
seguencing matrixes are used by the functional units to provide the
necessary interlock information,then the handling of multiple
functional units of a given type is perhaps easier to envision.

The functional unit then executes the uppermost instruction that
has a one in the column of the Destination Matrix corresponding to
the functional unit and has its registers free. With multiple
functional units the individual functional units must in addition
check the status of alledi¥e functional units. |

If the number of instructions that can be initiated per cycle
is restricted by the number of busses, i.e., one has fewer busses
than functional units or rows in the sequencing matrices, one can
then take the approach that each instruction uses a functional unit
called buss in addition to the functional unit explicitly requested
by the instruction.

¥

cONCLUSION

In this paper we have described a dynamic scheduling mechanism
for providing a look—-ahead capability which enables the execution
of instructions to be initiated out-of-sequence. 1In addition the
mnechanism is capable of controlling the simultaneous initiation of
two Or more instructions.

The generality of register and functional unit interlocking pro-
vided by the mechanism may well be in excess of what is necessary
for & given computer design. The modifications to suit any par-
ticular design will usually be reasonably obvious and are beyond the
scope of this paper.

~-20-
REFERENCES

1. G. M. Amdahl. Engineering Aspects of Large, High-Speed Computer
. Design; Part II--Logical Organization. Paper presented at
the Office of Naval Research Symposium on High-Computer
Hardware, November 17-18, 1964, Washington D. C.

2. ,T. C. Chen. The Overlap Design of the IBM System/360 Moc~l 952
Central Processing Unit. AFIPS Conference Proceedings
Vol. 25, Part 2. 1964 Spring Joint Computer Conference.
Spartan Books, Washington D. C. (1964) pp. 73-80.

3. J. E. Thornton. Parallel Operation in the Control Data 6600.
AFIPS Conference Proceedings Vol. 25, Part 2 Spring Joint
Computer Conference. Spartan Books, Washington D. C.
(1964) pp. 33-40. '

